j O e C H E M

Alcohols Study Guide

Link to Series on jOeCHEM

Table of Contents:

- Terms to Know
- Overview of Concepts
- <u>Summary of Reactions</u>
- <u>Tips, Tricks & General Advice</u>

Hi, gang, and welcome to the Alcohols study guide on jOeCHEM! If this is your **first** study guide (hey, welcome—glad you're here), let me provide some background for what I envision these guides to be and how they are supposed to help you kick organic butt.

For every series on jOeCHEM (aka "Gen Chem Boot Camp", for example), I want these study guides to be a central summary point. If you're starting to study for an exam, and you want to have a general idea of what is contained within a given unit, I hope you can turn to these study guides and get that overview.

Of course jOeCHEM can't be a perfect substitute for every Organic Chemistry class (each teacher/class is different), but I'll aim to include:

- 1. Terms you need to know + their definitions
- 2. An overview of all the key concepts in a given series
- 3. A summary of all the reactions specific to that series (this will be a thing when we start learning reactions)
- 4. Tips & Tricks I think could be helpful and may not necessarily fit in the other sections

Terms to Know

Below is a list of terms that you should have a working understanding of. There's a lot of science-y jargon in Organic Chemistry, so to be able to walk-the-walk (do reactions and stuff), we have to have to be able to talk-the-talk (talk and stuff).

- Oxidation a word used to describe when an atom <u>literally</u> has more bonds to oxygen. In Gen-Chem you learn about calculating oxidation #'s but in OChem, it's as simple as: an atom having more bonds to oxygen == that atom has been oxidized.
- Reduction the opposite of oxidation! This is a word used to describe when an atom <u>literally</u> has less/fewer bonds to oxygen. It's as simple as: an atom having less bonds to oxygen == that atom has been reduced.
- Jones Reagent this is a common phrase you might hear that is equal to the Na₂Cr₂O₇, H₂SO₄ reagent combination which oxidizes alcohols more aggressively.

• PCC – this is a common abbreviation you might hear that stands for **pyridinium chlorochromate**, a reagent that oxidizes alcohols more mildly.

 \cap

0

- this is the structure of PCC

- LiAlH₄ (aka LAH) lithium aluminum hydride, a very reactive source of hydride, is great at reducing carbonyls. You will see both the chemical formula and the 'LAH' abbreviation.
- Grignard Reagent an organomagnesium halide. That's a fancy phrase for saying a Grignard reagent is a carbanion (carbon with negative charge) will be connected to a magnesium + a halogen: RMgX
 - Grignard's are both excellent bases (they love grabbing H⁺) and nucleophiles (they love attacking carbonyls and other electrophiles)
- Synthesis Problem a type of problem in organic chemistry where a target molecule (aka a product) is given and must be created using specific or general starting material
- Retrosynthetic Analysis an approach to synthesis problems where you start at the END of the synthesis problem, working backwards from the product and toward the specified starting material.

Overview of Concepts

- Oxidation of Alcohols
 - Creating a carboxylic acid: you'll need a primary alcohol (alcohol attached to a primary carbon) and treat it with H₂SO₄, Na₂Cr₂O₇ (Jones Reagent)
 - Creating a aldehyde: you'll need a primary alcohol (alcohol attached to a primary carbon) and treat it with PCC
 - Remember that you CANNOT oxidize a tertiary alcohol (alcohol attached to a tertiary carbon)
 - If you are oxidizing a chiral carbon, it WILL lose its stereochemistry. You are transforming an sp₃ (tetrahedral) carbon into an sp₂ (trigonal planar) one since you are making a carbonyl (either a ketone, aldehyde, or carboxylic acid)
- Reduction of Carbonyls (ketones or aldehydes)
 - At this point in your OChem journey, LiAlH₄ and NaBH₄ basically function the same way (this is not true, but you'll learn the finer grained differences in OChem II).
 - Using LiAlH₄ and NaBH₄ take carbonyls (ketones or aldehydes) and produce alcohols.
 - If you reduce a carbonyl (which is sp₂, trigonal planar) and it is chiral after the fact (attached to four different, unique groups), you will produce a racemic result at the carbon that was attacked by hydride.
- Grignard Reagents
 - Grignard Reagents are typically used for attacking carbonyls (ketones & aldehydes). You'll use them in OChem II to attack many other types of carbonyls.
 - While Grignards are amazing at attacking ketones + aldehydes, don't forget that they are:
 - Great bases (they love to pick up H⁺)—a Grignard will pass up a carbonyl/S_N2 reaction to pick up an acidic proton
 - Great nucleophiles for general S_N2 reactions
 - You need to treat an alkyl halide (either an alkyl chloride or bromide) with Magnesium to make a Grignard.
- Retrosynthetic Analysis
 - Count your carbons in the product and in the reactants, and figure out how much of each piece you need
 - Make a "cut" in your product, and assign roles to the reactants—Grignard Reagent and Substrate

- Work backwards. It know it seems wonky, but it really is easier than going forwards
- $\circ~$ Make sure your reactions are the most "efficient" way to make all your intermediate molecules. If you need to make a **primary alcohol, use S_N2** and if you need a **secondary or tertiary alcohol, use S_N1**. Remember when you should do radical chlorination versus radical bromination when you're tacking a Leaving Group on. Remember when to use PCC or Na_2CrO_7/H_2SO_4 to make an aldehyde or ketone.

Summary of Reactions

Alcohol Formation via $S_N 2$

 \circ S_N2 alcohol formation works well when attacking a sterically available carbon (primary or methyl)

Alcohol Formation via $S_N 1$

 \circ S_N1 alcohol formation works well working with a more substituted carbon (secondary or tertiary), BUT be careful of carbocation shifts

Oxidation with Na₂Cr₂O₇, H₂SO₄

- Also called the 'Jones Reagent'
- The more 'aggressive' oxidation reaction: creates carboxylic acids and ketones
- Cannot oxidize tertiary alcohols

Oxidation with **PCC**

- PCC is an abbreviation for pyridinium chlorochromate
- o The 'milder' oxidation reaction: creates aldheydes and ketones
- Cannot oxidize tertiary alcohols

Reduction with NaBH₄, EtOH (reduces both ketones and aldehydes)

• The 'milder' reduction reaction: reduces <u>aldehydes</u> + <u>ketones</u> to alcohols

• A **racemic result** is created if the carbonyl (ketone or aldehyde) that is attacked becomes a stereocenter after the fact

Reduction with LAH (reduces both ketones and aldehydes)

- The (crazily) 'aggressive' reduction reaction: reduces <u>aldehydes</u> + <u>ketones</u> to alcohols
- A **racemic result** is created if the carbonyl (ketone or aldehyde) that is attacked becomes a stereocenter after the fact

Replacing an alcohol with a chloride

Replacing an alcohol with a bromide

- An Sn2 reaction where an alcohol (during the mechanism) is transformed into a better leaving group and replaced by a bromide
- If the substrate (aka the alcohol) is a stereocenter, the backside attack will invert the stereochem (as shown in the example reaction)

Replacing an alcohol with a chloride

- An Sn2 reaction where an alcohol (during the mechanism) is transformed into a better leaving group and replaced by a chloride
- If the substrate (aka the alcohol) is a stereocenter, the backside attack will invert the stereochem (as shown in the example reaction)

Grignard preparation (turning an alkyl halide into a Grignard reagent)

- Sometimes a solvent accompanies the Mg (such as THF)—this *doesn't* make a difference, so if you see it don't be thrown off/confused
- The carbon attached to the -MgX is now a **carbanion**—a very negative, reactive carbon. It controls the 2 electrons in the bond to the MgX
- Grignards are VERY nucleophilic but ALSO very basic—if they see an acidic proton they will go for that first

Grignard attack of an electrophile (regular ole' $S_N 2$)

 Grignard's, being good nucleophiles, love to and will readily perform Sn2 on sterically available carbons (nice way to lengthen/combine carbon chains)
Grignard attack of a carbonyl (ketone or aldehyde)

- Grignard's, being good nucleophiles, love to attack carbonyl carbons (sine they're partially positive). This is a good way to lengthen carbon chains, producing an alcohol in the product
- A **racemic result** is created if the carbonyl (ketone or aldehyde) that is attacked becomes a stereocenter after the fact

Tips, Tricks & General Advice

- There is a lot going on in this series, so if it feels like a lot or things are frustrating, don't sweat it. Take a deep breath/a break and keep hammering practice problems. You WILL get it.
- I absolutely sucked at synthesis problems/retrosynthetic analysis when I was first introduced to them. Keep at it—I promise you will be a rock star at them if you keep practicing.